Airborne Flux Observations Constrain Sources and Sinks of Reactive Gases Acknowledgments NASA ROSES SEAC4RS NASA ROSES ACCDAM DC-8 pilots and crew SEAC4RS science team <u>G. M. Wolfe</u>^{1,2}, T. F. Hanisco¹, H. L. Arkinson³, T. P. Bui⁴, J. D. Crounse⁵, J. Dean-Day^{4,6}, A. Goldstein⁷, A. Guenther⁸, S. R. Hall⁹, G. Huey¹⁰, D. J. Jacob¹¹, T. Karl¹², P. S. Kim¹¹, X. Liu¹⁰, M. R. Marvin³, T. Mikoviny¹³, P. K. Misztal⁷, T. B. Nguyen⁵, J. Peischl^{14,15}, I. Pollack^{14,15}, T. Ryerson¹⁴, J. M. St. Clair⁵, A. Teng⁵, K. R. Travis¹¹, K. Ullmann⁹, P. O. Wennberg⁵, and A. Wisthaler¹³ ¹NASA GSFC, ²JCET/UMBC, ³U. MD, ⁴NASA ARC, ⁵Caltech, ⁶BAERI, ⁷UC Berkeley, ⁸PNNL, ⁹NCAR, ¹⁰GA Tech, ¹¹Harvard, ¹²U. Innsbruck, ¹³U. Oslo, ¹⁴NOAA, ¹⁵CIRES/CU Boulder #### **MOTIVATION** - Forests are both a source and sink of reactive gases - Gaps in our understanding of emissions, deposition and chemistry collectively limit confidence in model predictions - Disentangling processes with observations of chemical concentrations alone is challenging E 0.8 ₩ 0.4 Flux (pptv m/s) #### MISSION SEAC⁴RS: Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys HO_2 #### **METHODS** Eddy Covariance Mass Balance Concentrations vary in ac ac ar Fluxes provide direct constraints on the <u>rates</u> of physical and chemical processes. ### RADICAL CYCLING - Concentrations of OH and HO₂ derived from slope of isoprene and H₂O₂ flux vertical profiles - Comparison with GEOS-Chem and UWCM shows good agreement for HO₂ but not OH Fluxes provide an additional check on radical concentrations in efforts to improve model mechanisms and investigate measurement artifacts. | Source | [OH]
10 ⁶ cm ⁻³ | [HO ₂]
10 ⁸ cm ⁻³ | |------------------|--|--| | Flux | 1.3 ± 0.3 | 5.8 ± 1.0 | | GEOS-Chem | 0.5 ± 0.1 | 5.8 ± 0.4 | | UWCM (0-D) | 1.0 ± 0.4 | 6.6 ± 0.6 | # ISOMERIZATION - Curvature reflects temperature dependence of isomerization - Calculated flux profile using lab-derived HPALD production rate agrees with observed slope Isomerization may be a less important radical source in low NO_x regimes than initially proposed. E-to-W Distance (km) ## AEROSOL UPTAKE - Difference in calculated vs observed slopes imply unknown sources/sinks - ISOPOOH+IEPOX budget closed with minimal aerosol uptake - 70% of ISOPN sink may be due to aerosol losses Isoprene nitrates may be a source of particle mass, while IEPOX uptake may be inhibited (in this environment). - Observed isoprene emissions are 40% lower than model - Observed soil NO_x emissions are 50% higher than model - Wavelet transforms illustrate how surface fluxes vary across the transect Direct measurements of surface fluxes at an ecosystem scale are ideal for targeted refinement of emission inventories. ·ISOPO₂ # LIFETIME OF NOX - Lifetime derived from flux slope (2.0 h) longer than that from known sinks (1.4 h) - NO_x recycling from AN of 29% can reconcile this difference Temporary reservoir species extend the spatial impact of NO_x emissions on pollutant formation and N deposition. ## **DEPOSITION** - Model accurately predicts O₃ deposition (for this case) - H₂O₂ deposition consistent with transport-limited uptake - Variability along transect may reflect both surface characteristics and chemistry Parameterizations must be retooled to robustly reflect physical and chemical mechanisms driving deposition.